

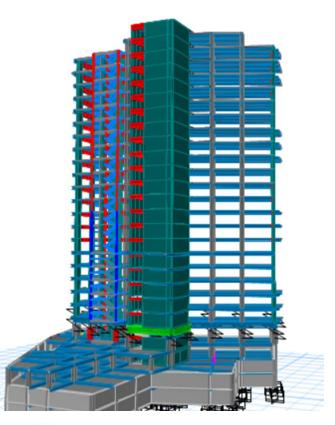
del Código Modelo Sismico para América Latina y El Caribe

Protección Sísmica: Aislamiento Sísmico

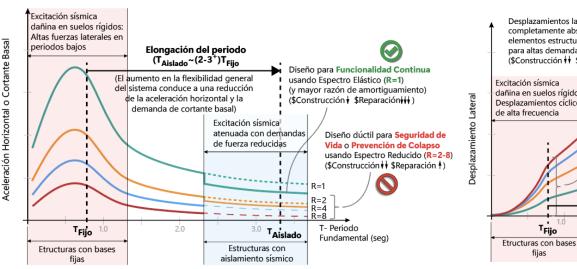
Ing. Marija Trifunovic, M.Sc. Earthquake Protection Systems

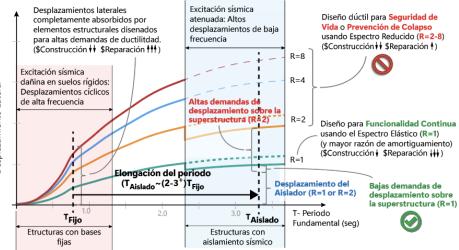
> San Salvador, El Salvador 08 de octubre de 2025

> www.codigomodelosismico.org

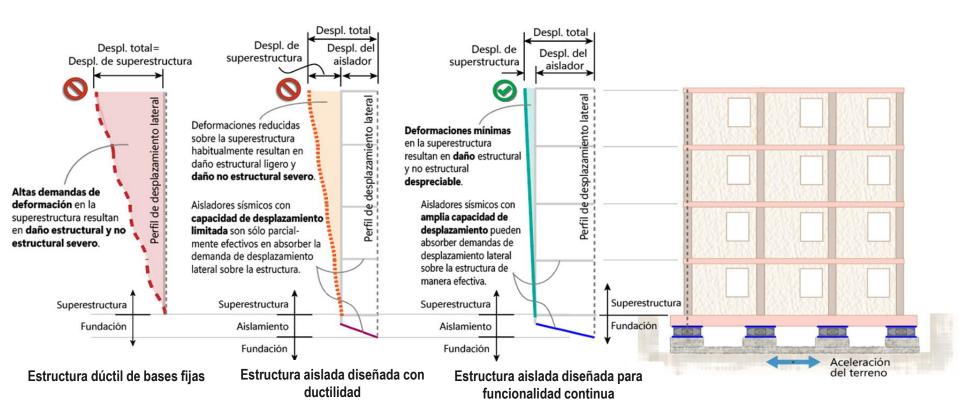


Contenido




- Conceptos fundamentales de diseño
- Tipos de aisladores sísmicos
- Factores de modificación de propiedades
- Recentrado del aislador
- Ensayos de sistemas de aislamiento sísmico
- Desempeño de la estructura

Conceptos fundamentales de Aislamiento Sísmico



Efecto de la Elongación del Periodo de Vibración a través del Aislamiento Sísmico sobre la Aceleración Horizontal y Cortante Basal usados para el Diseño de la Estructura

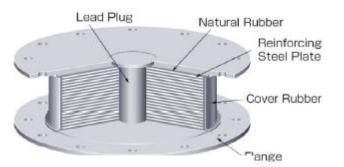
Efecto de la Elongación del Periodo de Vibración a través del Aislamiento Sísmico sobre la Demanda de Desplazamiento sobre la Estructura

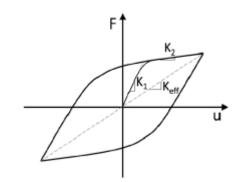
Conceptos fundamentales de Aislamiento Sísmico

Conceptos fundamentales de Aislamiento Sísmico

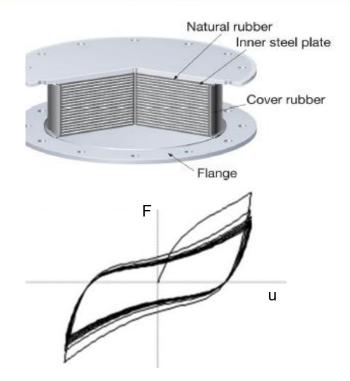
Proceso de diseño:

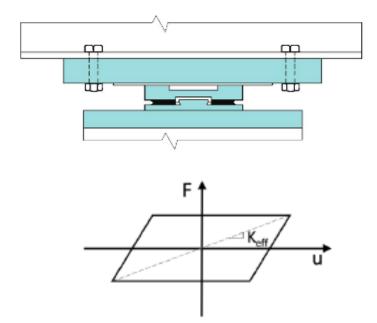
- Diseño preliminar del aislador
 - Cargas axiales sobre los aisladores
 - o Demanda sísmica: sismo de diseño y sismo máximo considerado
 - o Curva desplazamiento-carga lateral del dispositivo de aislamiento
 - Factores de modificación de propiedades de limite inferior y de limite superior (factores λ_{min} y λ_{max})
 - Verificar la capacidad de recentrado
- Revision de los parámetros de desempeño
 - Revisión de las derivas laterales de la estructura aislada
 - Revisión de las aceleraciones espectrales de entrepisos
- Diseno de los elementos estructurales
 - Distribución de la fuerza lateral
 - Diseño de los elementos estructurales
 - Detallado de la interfaz de aislamiento


Interfaz de aislamiento

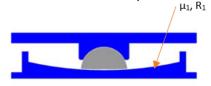


Sistemas de aislamiento sísmico		
Apoyos	Apoyos	
elastoméricos	deslizantes	
Aisladores de caucho con alto amortiguamiento (HDRB)	Deslizadores planos	
Aisladores de caucho natural (NRB)	Péndulos de fricción simples	
Aisladores de caucho natural con núcleo de plomo (LRB)	Péndulos de fricción doble	
Aisladores de caucho de baja rigidez (LMRB)	Péndulos de fricción triple (FPT)	

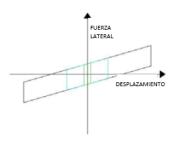

Nota: apoyos de rodamiento no son permitidos por los códigos por falta de recentrado

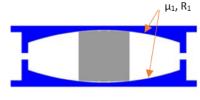


Aisladores de caucho natural con núcleo de plomo (LRB)



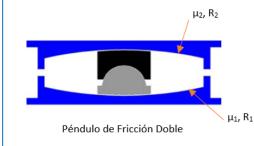
Aisladores de caucho con alto amortiguamiento (HDRB)

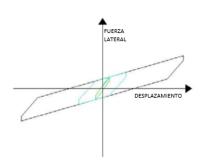

Deslizadores planos


Péndulo de Fricción Simple:

Péndulo de Fricción Simple de una Cóncava

Ciclo Fuerza Lateral-Desplazamiento

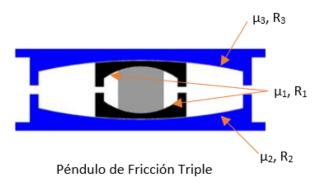



Péndulo de Fricción Simple de dos Cóncavas

Parámetros de diseño:

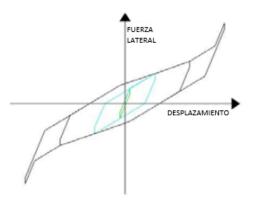
- 1 coeficiente de fricción: μ₁
- 1 Radio de curvatura: R₁

Péndulo de Fricción Doble:


Ciclo Fuerza Lateral-Desplazamiento

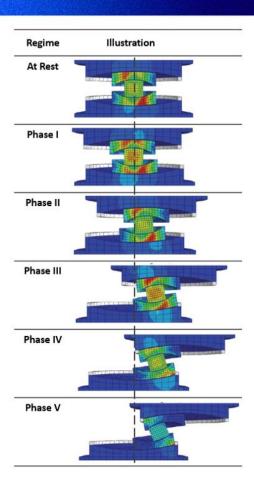
Parámetros de diseño:

- 2 coeficientes de fricción: μ_1 y μ_2
- 2 Radios de curvatura: R₁ y R₂


Péndulo de Fricción Triple:

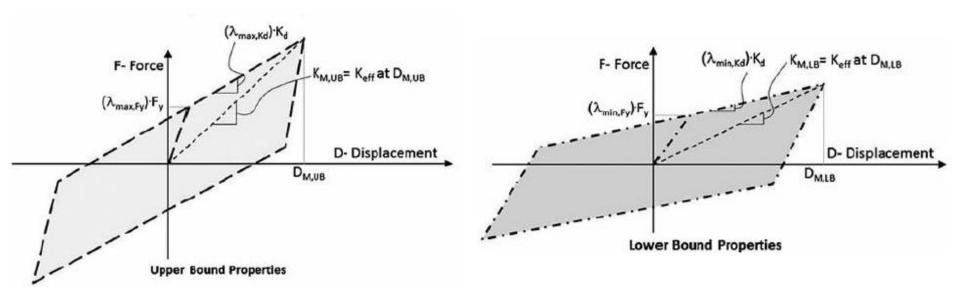
Parámetros de diseño:

3 coeficientes de fricción: $\mu_{1,}~\mu_{2}$ y μ_{3}


3 Radios de curvatura: R₁, R₂ y R₃

Ciclo Fuerza Lateral-Desplazamiento

Mechanical Behavior of Multi-Spherical Sliding Bearings

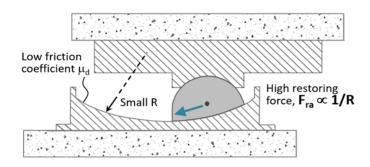


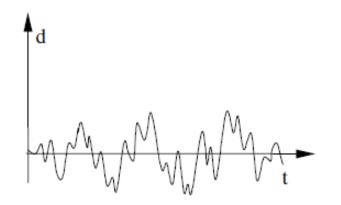
Daniel M. Fenz and Michael C. Constantinou

Factores de modificación de propiedades

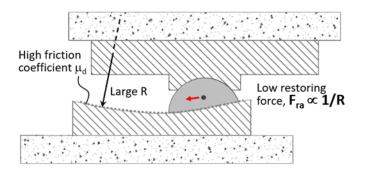
Variabilidad en propiedades de los aisladores:

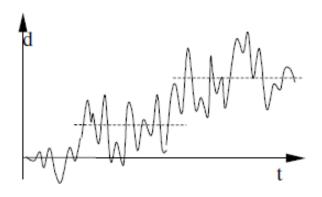
Factores de modificación de propiedades

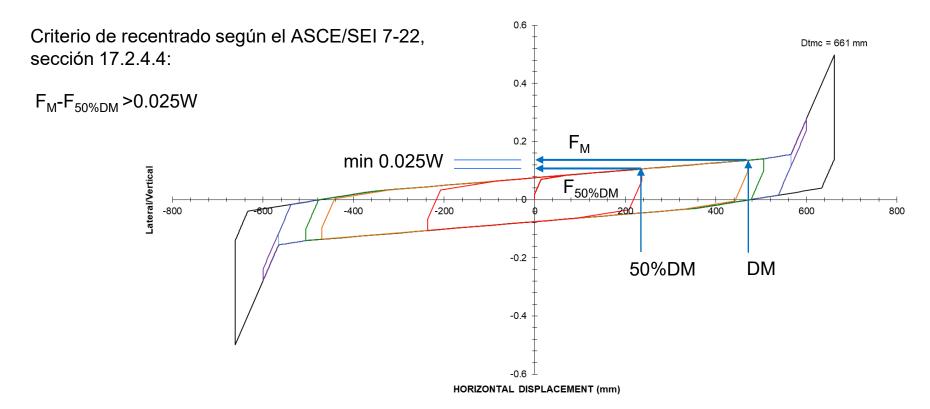



- Propiedades del sistema de aislamiento
 - Propiedades nominales
 - Factores de modificación de propiedades:
 - λ_{max} : limite superior
 - λ_{min} : limite inferior
 - A base de datos experimentales o ecuaciones definidas en el ASCE 7-22, sec. 17.2.8.4
 - Para Funcionalidad Continua únicamente a base de datos experimentales:
 - $\lambda_{(ae,max)}$: factor de modificación de propiedades del dispositivo de aislamiento sísmico por efectos de envejecimiento se modifica en función de ensayos a largo plazo
 - 3.0, cuando $\lambda_{(ae,aged)}$ se determina después de 1 año de instalado
 - 1.5, cuando $\lambda_{(ae,aged)}$ se determina después de 10 años de instalado
 - 1.1, cuando $\lambda_{\text{(ae,aged)}}$ se determina después de 20 años de instalado
 - 1.0, cuando $\lambda_{(ae,aged)}$ se determina después de 30 años de instalado

La capacidad de recentrado




Adecuada capacidad de recentrado


Pobre capacidad de recentrado

La capacidad de recentrado

Ensayos de sistemas de aislamiento sísmico

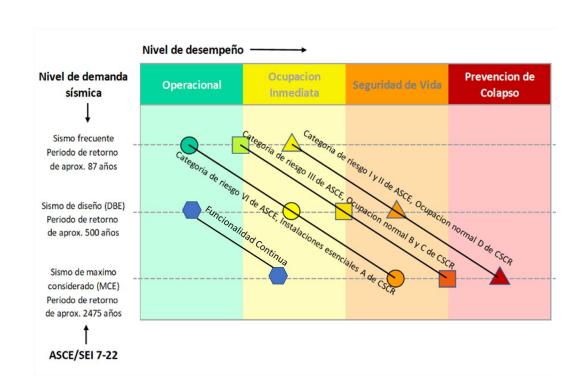


Table C17.2-1. Performance Expected for Minor, Moderate, and Major Earthquakes.

Earthquake Ground Motion Level*

Performance Measure	Minor	Moderate	Major
Life safety: Loss of life or serious injury is not expected	F, I	F, I	F, I
Structural damage: Significant structural damage is not expected	F, I	F, I	I
Nonstructural damage: Significant nonstructural or content damage is not expected	F, I	I	I

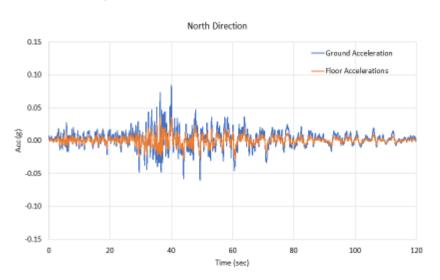
^{*}F indicates fixed-base; I indicates isolated.

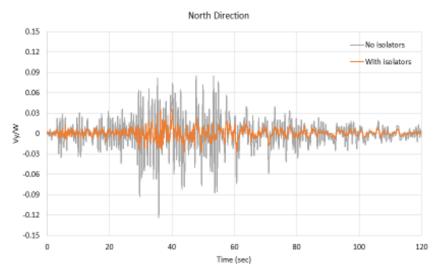
Fuente: ASCE 7-22

funcionalidad continua

ductilidad

Criterio Principal	Descripción	Protección Sísmica
a _{piso} ≤ 0.3g	La media de aceleraciones espectrales de piso de la superestructura se limita a 0.3g	Contenido de la edificación.
Δ ≤ 0.3%	Las derivas laterales entre pisos adyacentes de la superestructura se limitan al 0.3%	Componentes arquitectónicos e instalaciones electromecánicas.
R=1	La superestructura se diseña usando los espectros elásticos no reducidos (R=1) para el Sismo de Diseño	Daño estructural


Hospital de ciudad de Adana, Adana, Turquía

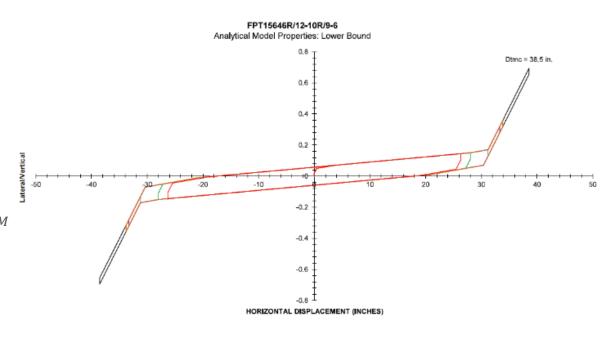


Hospital de ciudad de Adana, Adana, Turquía

El único hospital aislado sísmicamente e instrumentado en la zona afectada por los sismos del Febrero del 2023

Comparison of Ground Accelerations to Accelerations Above FPT Isolators (T3 IZO) -Adana Hospital During Mw 7.8 Turkey Earthquake.

Comparison of Base Shear with and without isolators — Adana Hospital During Mw 7.8 Turkey Earthquake.

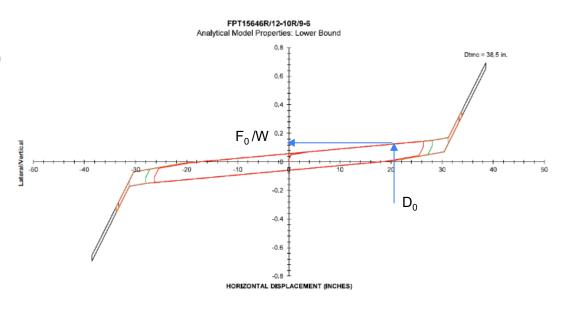

Método Lineal Estático

La rigidez efectiva, K_M :

$$K_M = \frac{\sum |F^+_M| + \sum |F^-_M|}{2D_M}$$
(ASCE 7-22, 17.2-3)

El amortiguamiento efectivo, ξ_M

$$\xi_M = \frac{\sum E_M}{2\pi K_M D_M^2}$$
(ASCE 7-22, 17.2-4)



- Paso 1: Escoger un desplazamiento D₀
- Paso 2: Determinar la fuerza lateral F₀ correspondiente al D₀
- Paso 3: Calcular K₀

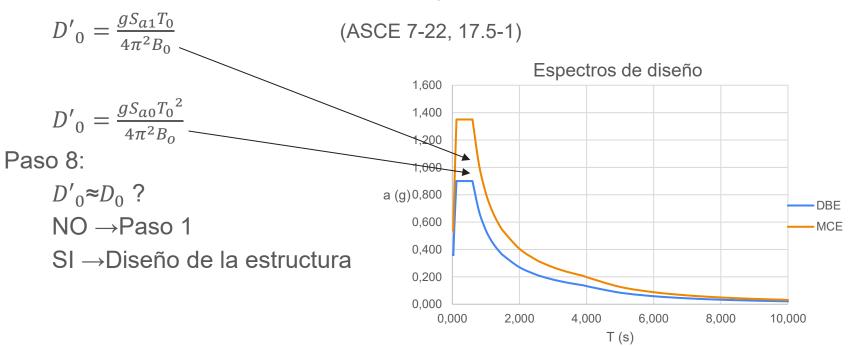
$$K_0 = \frac{F_0}{D_0}$$
 (ASCE 7-22, 17.2-3)

Paso 4: Calcular el T₀

$$T_0 = 2\pi \sqrt{\frac{W}{k_0 g}}$$
 (ASCE 7-22, 17.5-2)

• Paso 5: Calcular ξ_0

$$\xi_o = \frac{\sum E_o}{2\pi K_o D_o^2}$$
 (ASCE 7-22, 17.2-4)


Paso 6: Determinar el coeficiente de amortiguamiento Β_ο de la Tabla

17.5-1 del ASCE 7-22

(Coeficiente de Amortiguamiento) a,b B_{M}		
Amortiguamiento efectivo (porcentaje del crítico) β_M	Factor B_M	
≤2	0.8	
5	1.0	
10	1.2	
20	1.5	
30	1.7	
40	1.9	
≥50	2.0	

Paso 7: Recalcular el desplazamiento D'₀

Desplazamiento máximo total

$$D_{TM} = D_M \left[1 + \left(\frac{y}{P_T^2} \right) \frac{12e}{b^2 + d^2} \right] \ge 1.15 D_M$$
 (ASCE 7-22, 17.5-3)

Para Funcionalidad Continua adicionalmente

$$D_{TM} = D_M \left[1 + \left(\frac{y}{P_T^2} \right) \frac{12e}{b^2 + d^2} \right] \ge 1.2 \sim 1.5 \ D_M$$

Estructura debajo del nivel de aislamiento

$$V_b = K_M * D_M$$
 (ASCE 7-22, 17.5-5)

Estructura encima del nivel de aislamiento

$$V_{st} = V_b \left(\frac{W_s}{W}\right)^{(1-2.5\,\xi_M)}$$
 (ASCE 7-22, 17.5-7)
 $V_s = \frac{V_{st}}{R_I}$

R_I=1 para Funcionalidad Continua, para los demás casos es <2

Limites para V_s en el ASCE 7-22, 17.5.4.3

Distribución de la fuerza lateral

$$F_1 = \frac{(V_b - V_{St})}{R_I}$$
 Fuerza sísmica lateral inducida al nivel de aislamiento (ASCE 7-22, 17.5-8)

$$F_x = C_{yx}V_s$$
 Fuerza sísmica lateral inducida al nivel x, x>1 (ASCE 7-22, 17.5-9)

$$C_{vx} = \frac{w_x h_x^k}{\sum_{i=2}^n w_i h_i^k}$$
 (ASCE 7-22, 17.5-10)

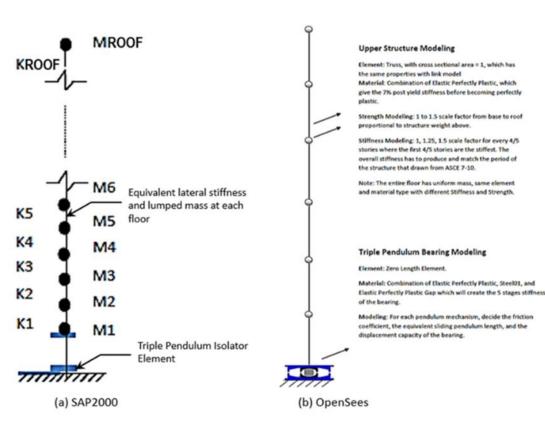
$$k = 0.14 \beta_M T_{fb}$$
 (ASCE 7-22, 17.5-11)

Excepción:

Fuerza sísmica lateral F_x

Basándose en un modelo simplificado

línea con masas


concentradas en los entrepisos

y una representación

concentrada del sistema de

aislamiento sísmico

Análisis dinámico no lineal de respuesta en el tiempo escalado a V_b/R_I al nivel de la base.

