Ginés Suárez

Especialista senior de gestión del riesgo del BID

Comparativa de códigos de construcción en Latinoamérica

10/09/2025

Primer Congreso Internacional Código Modelo Sísmico

INDICE

Resumen ejecutivo

RECOMENDACIONES GENERALES

RECOMENDACIONES PARA SISMOS

RECOMENDACIONES PARA VIENTOS

RECOMENDACIONES PARA INUNDACIONES

SOSTENIBILIDAD

CERTIFICACIONES

FORTALECIMIENTO INSTITUCIONAL

CONCLUSIONES

Resumen ejecutivo

Resiliencia y Sostenibilidad en los

CODIGOS DE CONSTRUCCIÓN

en América Latina y el Caribe

Análisis regional comparativo y oportunidades de fortalecimiento

Papel de los códigos de construcción

Los códigos de construcción son esenciales para la resiliencia de la infraestructura y la gestión eficaz del riesgo de desastres.

Alcance y enfoque del estudio

El estudio analiza la integración de la resiliencia y la sostenibilidad en los códigos de construcción de 26 países de América Latina y el Caribe.

Objetivos y resultados

El estudio tiene como objetivo identificar las mejores prácticas, brechas y oportunidades para mejorar la preparación regional para desastres y la adaptación climática.

RECOMENDACIONES GENERALES

Fortalecimiento de las habilidades técnicas y la colaboración

Fortalecimiento de las capacidades técnicas

Mejorar las habilidades de los profesionales para garantizar la correcta aplicación y actualización de los códigos de construcción.

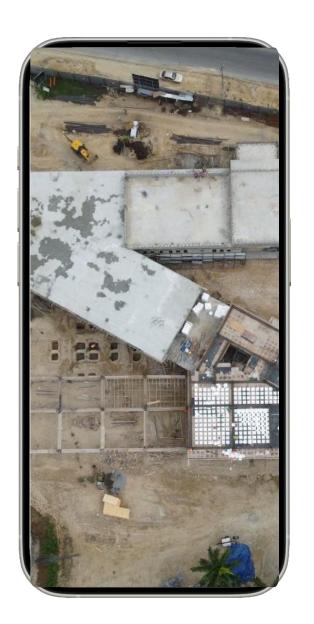
Participación Privada y Académica

Fomentar la participación del sector privado y académico en el desarrollo y revisión de códigos de construcción.

Colaboración regional

Promover la cooperación regional para intercambiar conocimientos técnicos y mejorar los estándares de construcción.

Uso de tecnologías avanzadas


Aplicar modelos probabilísticos y tecnologías emergentes para mejorar el desarrollo y la implementación del código de construcción.

RECOMENDACIONES PARA SISMOS

Recomendaciones

- Diseño de componentes no estructurales
- Información probabilista de amenaza sísmica y efecto de sitio
- Regulaciones para el refuerzo antes y después.

Tortigith Spried Made Halle Str. Argentina Bolivia Colombia Costa Rica Ecuador Guatemala Panamá República Dominicana Trinidad y Tobago Venezuela Chile México Nicaragua Brasil Haití Jamaica Perú Honduras Bahamas Barbados Belice 0 El Salvador 0 Guyana Surinam Paraguay

Comparativa

RECOMENDACIONES PARA VIENTOS

Recomendaciones

Adaptaciones de impacto del viento

Incorporar métodos de análisis alternativos para estructuras esenciales

Considerar los futuros efectos climáticos de la intensidad del viento en techos y fachadas

Fachadas y elementos nos estructurales.

Comparativa

San and the state of the state

			25	26	25	25	25	22	14
			96%	100%	96%	96%	96%	85%	54%
Argentina	7	100%	1	1	1	1	1	-1	1
Bolivia	7	100%	1	-1	1	1	1	-1	1
Brasil	7	100%	1	-1	1	-1	- 1	-1	-1
Costa Rica	7	100%	1	-1	1	1	1	-1	1
Guatemala	7	100%	1	1	1	1	1	-1	1
Haití	7	100%	- 1	-1	1	-1	- 1	-1	-1
Honduras	7	100%	1	1	1	1	1	-1	1
Nicaragua	7	100%	1	1	1	1	1	-1	1
Panamá	7	100%	- 1	-1	1	-1	-1	-1	-1
Trinidad y Tobago	7	100%	1	-1	1	1	1	-1	1
Venezuela	7	100%	1	1	1	1	1	-1	-1
Bahamas	6	86%	1	1	1	1	1	-1	0
Barbados	6	86%	1	1	1	1	1	1	0
Belice	6	86%	1	-1	1	1	1	-1	0
Chile	6	86%	1	-1	1	1	1	-1	0
Colombia	6	86%	- 1	-1	1	1	0	-1	-1
Guyana	6	86%	1	-1	1	1	1	-1	0
Jamaica	6	86%	1	1	1	1	1	1	0
México	6	86%	0	1	1	1	1	-1	1
Surinam	6	86%	-1	-1	1	1	1	-1	0
Uruguay	6	86%	-1	-1	1	1	1	0	-1
Ecuador	5	71%	-1	-1	1	0	-1	-1	0
El Salvador	5	71%	-1	1	0	1	1	-1	0
Paraguay	5	71%	-1	1	1	1	1	0	0
Perú	5	71%	-1	1	1	-1	-1	0	0
República Dominicana	5	71%	-1	-1	1	1	-1	0	0

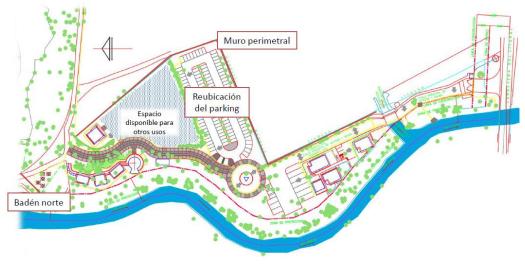
RECOMENDACIONES PARA INUNDACIONES

Recomendaciones

Gestión del riesgo de inundación

Implementar pautas de diseño para reducir los daños por inundaciones

Actualizar los mapas de amenazas con regularidad


Capacitar a los profesionales sobre la integración del riesgo de inundación en la construcción.

Comparativa

		CUTATION CO	ARIE .	g P	ACHT PILL	de frilligh	, to .		
			in the	Williag A.	AND THE	de de	Talle To	Se like	SECO NOTICE
			Hilly	400. C	481 Lin.	Alle	46	400	No My
			13	12	11	10	9	9	4
			50%	46%	42%	38%	35%	35%	15%
Colombia	- 7	100%	-1	-1	-1	-1	-1	-1	- 1
Costa Rica	7	100%	1	1	1	1	1	1	- 1
El Salvador	6	86%	-1	-1	1	- 1	- 1	- 1	0
República Dominicana	6	86%	-1	-1	-1	-1	-1	-1	0
Chile	5	71%	-1	0	1	0	-1	1	1
Ecuador	5	71%	-1	0	1	0	-1	-1	- 1
Belice	4	57%	-1	-1	1	-1	0	0	0
Honduras	4	57%	0	-1	1	0	-1	1	0
Bahamas	3	43%	1	-1	0	1	0	0	0
Guyana	3	43%	-1	-1	0	-1	0	0	0
Nicaragua	3	43%	0	0	1	0	-1	1	0
Surinam	3	43%	1	1	0	1	0	0	0
Trinidad y Tobago	3	43%	-1	-1	0	1	0	0	0
Venezuela	3	43%	0	0	1	0	-1	-1	0
Guatemala	2	29%	-1	-1	0	0	0	0	0
Haití	2	29%	0	-1	0	1	0	0	0
México	2	29%	-1	0	1	0	0	0	0
Argentina	0	0%	0	0	0	0	0	0	0
Barbados	0	0%	0	0	0	0	0	0	0
Bolivia	0	0%	0	0	0	0	0	0	0
Brasil	0	0%	0	0	0	0	0	0	0
Jamaica	0	0%	0	0	0	0	0	0	0
Panamá	0	0%	0	0	0	0	0	0	0
Paraguay	0	0%	0	0	0	0	0	0	0
Perú	0	0%	0	0	0	0	0	0	0
Herenous	0	00/	0	0	0	0	0	0	0

Ejemplos

Diseño del sitio

Medidas pasivas

Medidas activas

SOSTENIBILIDAD

Recomendaciones

Parámetros de eficiencia corporativa

Los códigos de construcción deben integrar la eficiencia energética, la eficiencia del agua y la zonificación geográfica para mejorar la sostenibilidad en la construcción.

Promoción de materiales sostenibles

Fomentar el uso de materiales de construcción sostenibles reduce el impacto ambiental y mejora la eficiencia del proyecto.

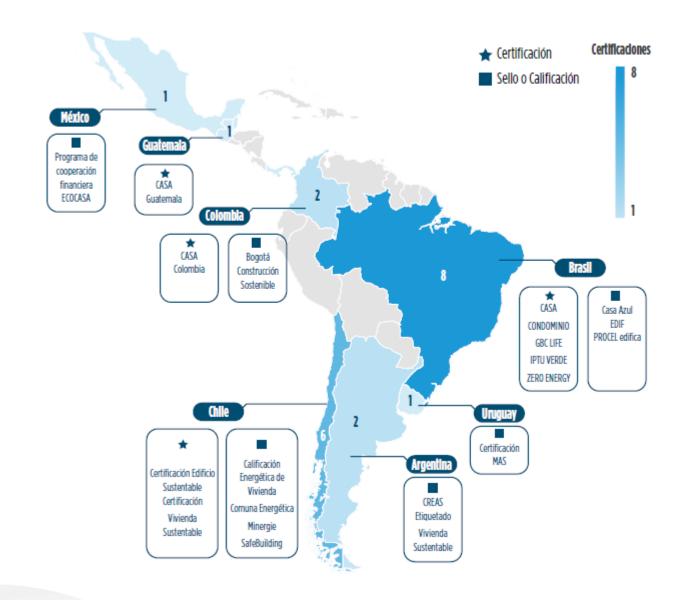
Incentivos regulatorios

El desarrollo de incentivos regulatorios fomenta prácticas de diseño sostenible y desarrollo de infraestructura alineadas con los objetivos climáticos.

CERTIFICACIONES

Recomendaciones

Certificaciones nacionales de sostenibilidad


Los sellos nacionales de sostenibilidad mejoran calidad de la construcción y garantizan el cumplimiento de los códigos de construcción c manera efectiva.

Alineación con los acuerdos climáticos internacionales

Las certificaciones ayudan a los países a alinear prácticas de construcción con los acuerdos climáticos globales que promueven la sostenib

Estandarización y evaluación

Los sistemas de certificación estandarizan los criterios de sostenibilidad y facilitan la evaluación proyectos sobre el impacto ambiental y la eficie de los recursos.

FORTALECIMIENTO INSTITUCIONAL

Educación, monitoreo y participación

Educación y Capacitación

Proporcionar recursos educativos y capacitación a profesionales, autoridades y comunidades es esencial para una implementación efectiva del código.

Monitoreo y cumplimiento

Sistemas de monitoreo sólidos garantizan que los códigos sostenibles se apliquen y apliquen de manera consistente en todos los niveles.

Participación comunitaria

La participación activa de las comunidades garantiza que los códigos aborden las necesidades locales y apoyen prácticas inclusivas y resilientes.

CONCLUSIONES

En resumen

Aumentar la resiliencia y la sostenibilidad

La implementación de las acciones propuestas mejorará la resiliencia y la sostenibilidad de los proyectos de infraestructura en América Latina y el Caribe.

Cerrando brechas de código

Abordar las brechas en los códigos actuales y promover las mejores prácticas es vital para reducir los riesgos de desastres y mejorar los estándares de seguridad.

Adaptación al cambio climático

Un enfoque integrado apoya la adaptación al cambio climático, permitiendo un desarrollo más seguro y respetuoso con el medio ambiente en la región.

METODOLOGÍA

Una metodología unificada para la identificación, evaluación y gestión del riesgo de desastre y de cambio climático para proyectos de infraestructura.

Descarga aquí

OFERTA DE CURSOS

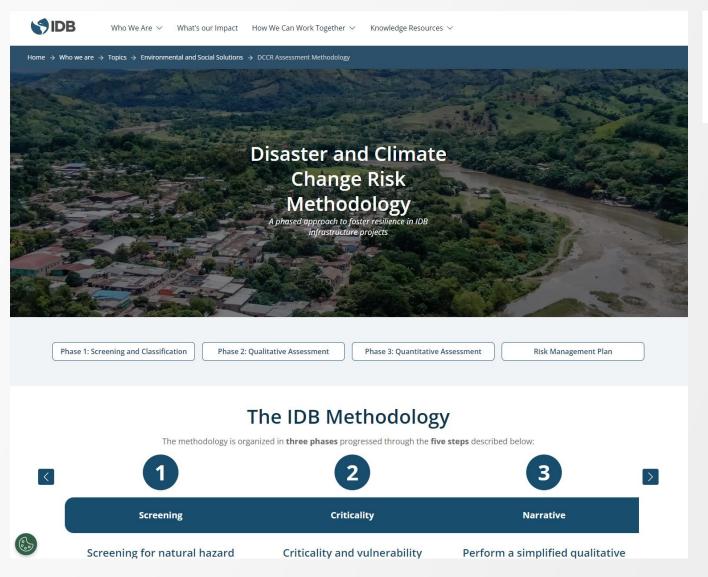
NORMA DE DESEMPEÑO 4: RIESGO DE DESASTRES

Dedicación: 4 horas

Idioma: Inglés

Gratis

IDBX: ANÁLISIS DEL RIESGO DE DESASTRES Y CAMBIO CLIMÁTICO EN PROYECTOS DE INFRAESTRUCTURA


Dedicación: 5 semanas – 20 a 30 horas

Idioma: Español, Inglés

Gratis

OFERTA DE CURSOS

Enlac e

