

Agenda

- I. CMS, Subcomité de Amenaza Sísmica, Clasificación de Sitios y Demanda Sísmica
- II. América Latina y El Caribe
- III. América Latina y El Caribe Sismicidad
- IV. Amenaza Sísmica Trabajo Desarrollado
- V. Clasificación de Sitios Trabajo Desarrollado
- VI. Clasificación de Sitios en Normas Vigentes
- VII. Clasificación Propuesta: Sitios A, B, C, D, E, F
- VIII. Clasificación Propuesta: Sitios (Especiales), G

I. CMS, SUBCOMITÉ:

AMENAZA SÍSMICA CLASIFICACIÓN DE SITIOS DEMANDA SÍSMICA

CMS, Subcomité de Amenaza Sísmica

Subcomité de Amenaza Sísmica, Clasificación de Sitios y Demanda Sísmica:

- · Zenón Aguilar, Perú
- · Miguel F. Cruz, Costa Rica
- · Omar G. Flores, Guatemala
- · Carlos Gamboa, Guatemala
- · Diego Hidalgo, Costa Rica
- Francisco Medina, Chile/EE.UU.
- · Héctor O'Reilly, República Dominicana
- · Juan Carlos Tarazona, Perú
- · Ramón Verdugo, Chile

II. América Latina y El Caribe

América Latina y El Caribe

REVISIÓN DE NORMAS DE LA REGIÓN

¿QUÉ PAÍSES/TERRITORIOS INCLUIMOS? HABITANTES ≥ 200.000

SUDAMÉRICA:
Argentina
Bolivia
Brasil
Chile
Colombia
Ecuador
Guyana
Guyana Francesa

Paraguay Perú

Surinam Uruguay

Venezuela

CENTRO AMÉRICA:

Belice

Costa Rica El Salvador Guatemala

Honduras

Nicaragua Panamá

NORTE AMÉRICA:

México

EL CARIBE:

Bahamas, Las

Barbados Cuba

Guadalupe (Francia)

Haití

Jamaica

Martinica (Francia)

Puerto Rico (EE.UU.)
República Dominicana ... s

Trinidad y Tobago

Fuente: internet. desconocida.

PRINCIPALES FUENTES SISMO-GÉNICAS: DINÁMICA TECTÓNICA.

INTERACCIÓN DE PLACAS:

- Sudamericana-Escocia
- Sudamericana-Antártica
- Sudamericana-Nazca
- Sudamericana-Cocos
- Sudamericana-Caribe
- Cocos-Caribe
- Cocos-Norteamericana
- Caribe-Norteamericana
- Norteamericana-Pacífico

FALLAS CORTICALES:

- Conocidas con Afloramiento a la Superficie.
- Conocidas sin Afloramiento a la Superficie.
- Desconocidas.

Fuente: internet, desconocida.

INTERACCIÓN PLACAS SUDAMERICANA-NAZCA

Afecta principal y severamente: Chile, Perú, Ecuador, Colombia.

También: Argentina-Oeste, Bolivia, Venezuela-Oeste.

Sismos M ≥ 8,5 en Catalogo Global:

- Registrados (1906-2025): 4/19 (21%)

- Pre-Instrumental (365-1896): 14/33 (42%)

INTERACCIÓN PLACAS PACÍFICO-NORTEAMERICANA

Afecta principal y severamente a México.

Sismos M ≥ 8,5 en Catalogo Global:

- Pre-Instrumental: Oaxaca 1787, M = 8,6 est.

8ª Jornada de la Comisión Permanente del Código Modelo Sísmico para América Latina y El Caribe

Fuente: internet, desconocida.

INTERACCIÓN PLACAS CARIBE-NORTEAMERICANA

Afecta principal y severamente: Islas del Caribe (Norte y Sur), México (Península de Yucatán).

Sismos M ≥ 8,5 en Catalogo Global:

- Pre-Instrumental: Guadalupe 1843, M = 8,5 est.

NO TODOS LOS SISMOS DE GRAN MAGNITUD CAUSAN DAÑOS O PÉRDIDAS DE VIDA.

SISMOS POTENCIALMENTE PELIGROSOS:

- Cercanos a Áreas Urbanas.
- Foco Cercano y/o Poco Profundo.
- Infraestructura Diseñada Inadecuadamente:

Infraestructura de Uso Regular: Residencial, Comercial, Industrial.

Infraestructura de Uso Esencial:

Gubernamental y Apoyo Emergencias (hospitales). Comunicaciones (caminos, puertos, telefonía,...). Líneas Vitales (energía, agua,...).

8ª Jornada de la Comisión Permanente del Código Modelo Sísmico para América Latina y El Caribe

Fuente: internet, desconocida.

SISMOS QUE HAN PROVOCADO GRANDES DAÑOS Y PÉRDIDAS DE VIDA: (Se excluyen: Chile, Perú, Ecuador, Colombia)

LUGAR	AÑO	MAGNITUD	PÉRDIDAS DE VIDA
Léogâne, Haití	2010	7,0	46.000-160.000
Michoacán, México	1985	8,0	5.000-45.000
San Juan, Argentina	1944	7,0	10.000
Samaná, República Dominicana	1946	7,8	2.550
Nippes, Haití	2021	7,2	2.248
San Salvador, El Salvador	1986	5,7	1.000-1.500
Usulután, El Salvador	1951	5,9-6,2	400-1.100
Vargas, Venezuela	1967	6,6	225-300

Fuente: Wikipedia {https://en.wikipedia.org/wiki/Lists_of_earthquakes}.

TODOS LOS PAÍSES DE LA REGIÓN SON AFECTADOS POR SISMOS DESTRUCTIVOS, UNOS MUY FRECUENTEMENTE (CON COSTA AL PACIFICO), OTROS CON RELATIVA BAJA FRECUENCIA (PARAGUAY, URUGUAY, ALGUNAS ISLAS DEL CARIBE).

PAÍS/TERRITORIO	MAGNITUD (M _w)	FECHA
Anguila (Gran Bretaña)	6,3	16/02/1906
Antigua y Barbuda	8,0 M _S	16/04/1690
Argentina, San Juan	7,5	23/11/1977
Aruba (Países Bajos)	4,7	27/08/2011
Bahamas	3,2	22/02/1992
Barbados	6,5	18/02/2014
Belice	4,7 m _b	28/06/1985
Bermudas (Gran Bretaña)	5,3	27/08/1988
Bolivia	8,2	09/06/1994
Brasil	7,6	09/11/1963
Caribe Neerlandés: Bonaire, San Eustaquio y Saba	5,2	10/03/2017
Chile, Valdivia	9,5	22/05/1960

PAÍS/TERRITORIO	$\begin{array}{c} MAGNITUD \\ (M_w) \end{array}$	FECHA
Costa Rica, Limón	7,7	22/04/1991
Cuba	7,1	20/02/1917
Curazao (Países Bajos)	4,4	31/10/2024
Dominica	6,4	08/01/1959
Ecuador-Colombia	8,8	31/01/1906
El Salvador	8,0 M _I	19/12/1862
Granada	7,0 M _S	03/12/1831
Guadalupe (Francia)	8,5 M _{uk}	08/02/1843
Guatemala	7,7	06/08/1942
Guayana Francesa	6,9	04/08/1885
Guyana	5,5	31/01/2021
Haiti, Cabo Haitiano	8,1 M _S	07/05/1842
Honduras	7,6	08/02/2025

Fuente: Wikipedia {https://en.wikipedia.org/wiki/Lists of earthquakes}.

TODOS LOS PAÍSES DE LA REGIÓN SON AFECTADOS POR SISMOS DESTRUCTIVOS, UNOS MUY FRECUENTEMENTE (CON COSTA AL PACIFICO), OTROS CON RELATIVA BAJA FRECUENCIA (PARAGUAY, URUGUAY, ALGUNAS ISLAS DEL CARIBE).

PAÍS/TERRITORIO	MAGNITUD (M _w)	FECHA
Islas Georgias del Sur y Sándwich del Sur (Gran Bretaña)	8,1–8,3	12/08/2021
Islas Malvinas/Falkland (Gran Bretaña)	7,4	17/08/1908
Islas Vírgenes (Gran Bretaña)	5,9	26/06/1985
Islas Vírgenes (EE,UU.)	7,2	18/11/1867
Jamaica	7,7	28/01/2020
Martinica (Francia)	7,5–8,0	11/01/1839
México	8,6	28/03/1787
Nicaragua	7,7	02/09/1992
Panamá	7,9–8,3 M _S	07/09/1882

PAÍS/TERRITORIO	$\begin{array}{c} MAGNITUD \\ (M_w) \end{array}$	FECHA
Paraguay	6,5	28/02/1989
Perú, Callao	9,0	28/10/1746
Puerto Rico	8,0	02/05/1787
República Dominicana	7,8	04/08/1946
San Bartolomé (Francia)	5,4	18/11/1990
San Cristóbal y Nieves	6,5	16/03/1985
San Martín (Francia/Países Bajos)	5,0	04/07/2012
San Vicente y Las Granadinas	6,1	06/07/1940
Santa Lucía	7,3	19/03/1953
Trinidad y Tobago	7,5 M _{fa}	10/01/1888
Uruguay, Río de la Plata	5,5 M _S	05/06/1888
Venezuela, Mérida	7,0	29/04/1894

Fuente: Wikipedia {https://en.wikipedia.org/wiki/Lists of earthquakes}.

IV. Amenaza Sísmica - Trabajo Desarrollado

TEXTO:

CAPÍTULO I - AMENAZA SÍSMICA

CMS AL&EC - AMENAZA SÍSMICA

CÓDIGO MODELO SÍSMICO PARA AMÉRICA LATINA Y EL CARIBE (CMS AL&EC) Subcomité de Amenaza Sísmica

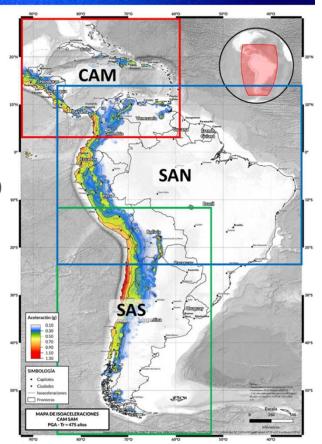
ÍNDICE

	Indice	2			
1.	Objetivos, Limitaciones y Antecedentes	3			
2.	Amenaza Sísmica	3			
3.	Mapas de Amenaza Sísmica	3			
4.	Referencias	6			
And	exo A. Zonificación Sísmica	7			
Anexo B. Recomendaciones para Actualizar y Mejorar los Mapas de Amenaza Sísmica					

AMENAZA SÍSMICA

AMÉRICA LATINA Y EL CARIBE 2024

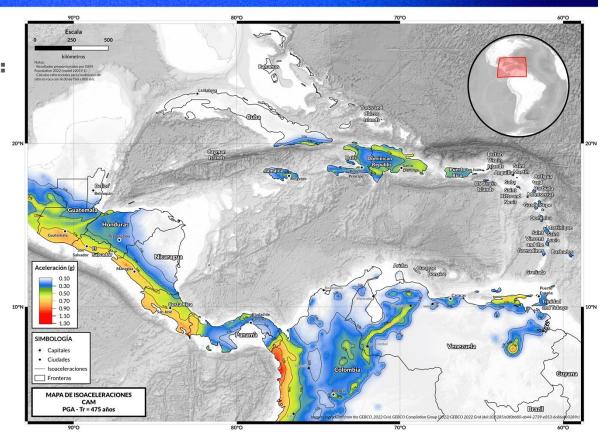
DOCUMENTO DE TRABAJO



CONJUNTO DE MAPAS (PRELIMINARES) DE AMENAZA OBTENIDOS MEDIANTE ANÁLISIS PROBABILÍSTICOS:

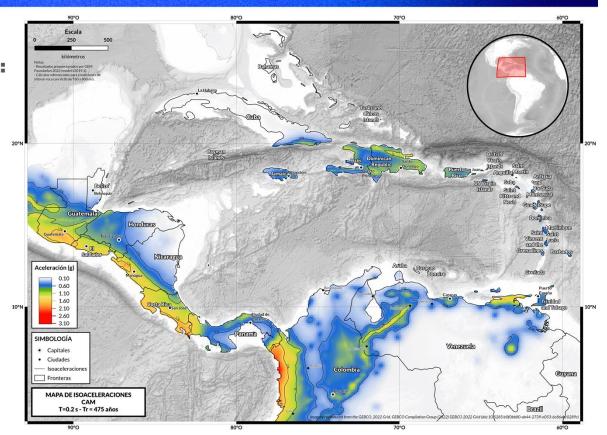
• PERIODOS DE RETORNO: 475, 2.475 AÑOS

• ACELERACIONES: PGA, PSa(T=0,2s), PSa(T=1,0s)



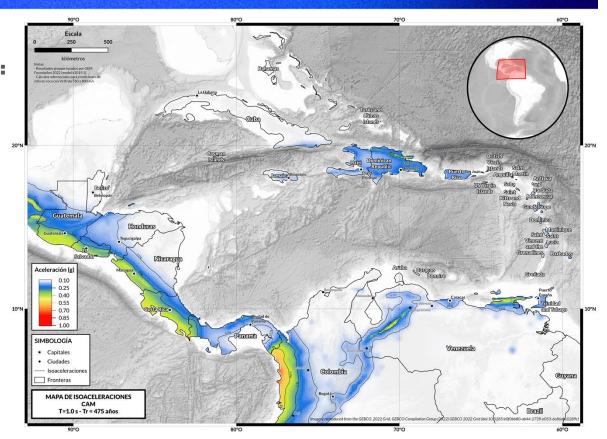
Iso-aceleraciones para PGA y un periodo de retorno de 475 años:

MAPA DE AMENAZA
CENTRO AMÉRICA Y EL CARIBE:



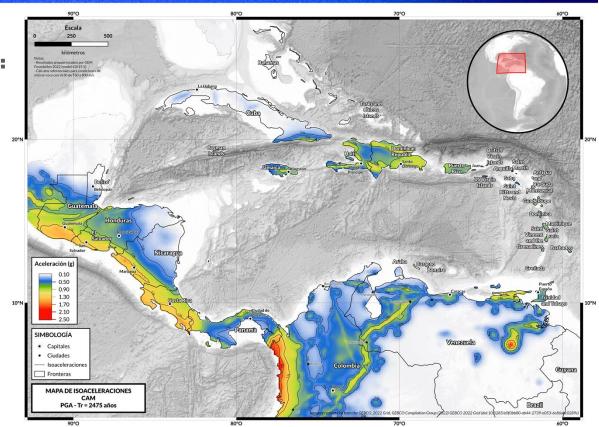
Iso-aceleraciones para PGA y un periodo de retorno de 475 años:

MAPA DE AMENAZA
CENTRO AMÉRICA Y EL CARIBE:



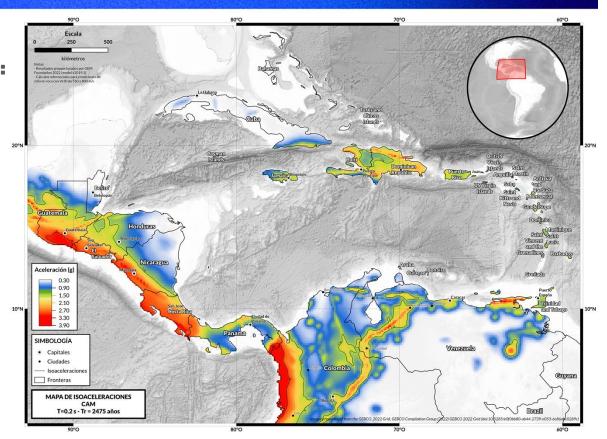
Iso-aceleraciones para PSa(T=0,2s) y un periodo de retorno de 475 años:

MAPA DE AMENAZA
CENTRO AMÉRICA Y EL CARIBE:



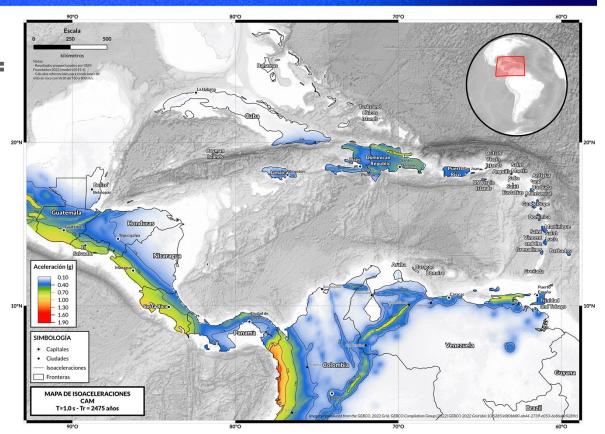
Iso-aceleraciones para PSa(T=1,0s) y un periodo de retorno de 475 años:

MAPA DE AMENAZA CENTRO AMÉRICA Y EL CARIBE:



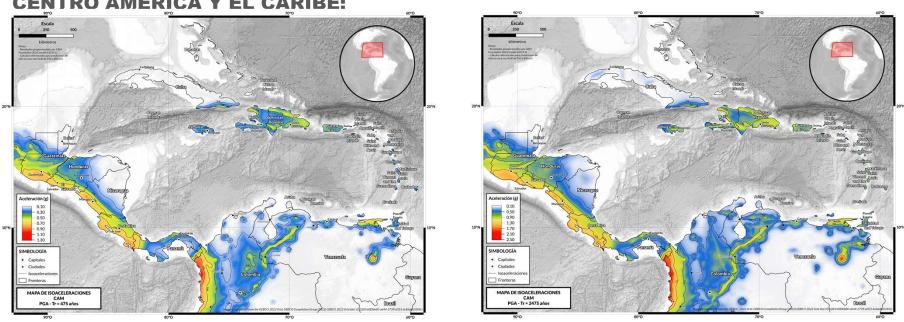
Iso-aceleraciones para PGA y un periodo de retorno de 2.475 años:

MAPA DE AMENAZA
CENTRO AMÉRICA Y EL CARIBE:



Iso-aceleraciones para PSa(T=0,2s) y un periodo de retorno de 2.475 años:

MAPA DE AMENAZA CENTRO AMÉRICA Y EL CARIBE:


Iso-aceleraciones para PSa(T=1,0s) y un periodo de retorno de 2.475 años:

MAPA DE AMENAZA

CENTRO AMÉRICA Y EL CARIBE:

Iso-aceleraciones para PGA y periodos de retorno de 475 (izquierda) y 2.475 (derecha) años.

VERIFICACIONES REGIONALES:

- Modelo de Ruptura.
- Segmentación Sismo-génica.
 - · Se requiere mayor participación de expertos locales.
- Sismicidad Regional Catálogo de Sismos.
- Modelos de Recurrencia (Gutenberg-Richter).
- Rango de Magnitudes.
- Modelos de Atenuación de Aceleraciones Espectrales (Ground Motion Prediction Ecuations, GMPEs).

Agenda

La mayoría de los modelos de atenuación se han obtenido de datos registrados en EE.UU., Japón, Taiwán, Nueva Zelanda, Italia y otras zonas.

Solo dos conjunto de funciones han usado datos regionales (principalmente de Chile):

- Abrahamson y otros (2016).
- Montalva y otros (2017).

Se requieren registros de aceleración obtenidos con instumentos instalados en zonas regionales.

→ Instrumentación adecuada y suficiente.

Deferencie Madele de Atomoción	Ponderación				
Referencia Modelo de Atenuación	SARA	CCARA			
Corteza Activa		•			
Akkar y otros (2014)	1/3	1/3			
Bindi y otros (2014)	1/3	1/3			
Boore y otros (2014)	1/3	1/3			
Corteza Estable					
Atkinson y Boore (2003, 2008)	1/4	-			
Tavakoli y Pezeshk (2005)	1/2	-			
Drouet (2015) - Brazil with depth version	1/4	-			
Subducción interpla	са	•			
Zhao y otros (2006)	1/3	1/3			
Abrahamson y otros (2016)	1/3	1/3			
Montalva y otros (2017)	1/3	-			
Youngs y otros (1997)	-	1/3			
Subducción intrapla	са				
Abrahamson y otros (2016)	1/2	1/3			
Montalva y otros (2017)	1/2	-			
Kanno y otros (2006)	-	1/3			
Zhao y otros (2006)	-	1/3			

V. Clasificación de Sitio - Trabajo Desarrollado

América Latina y El Caribe - Clasificación de Sitios

TEXTO:

ENGINEERING

CAPÍTULO J - CLASIFICACIÓN DE SITIOS

CMS AL&EC - CLASIFICACIÓN DE SITIOS

	Indice	1
1.	Introducción	2
2.	Propiedades Dinámicas de los Suelos	2
3.	Clasificación	2
4.	Comentarios Adicionales	4
5.	Referencias	4
An	exo A. Clasificación Sísmica de Sitios (o Suelos) Regional	5

CÓDIGO MODELO SÍSMICO PARA AMÉRICA LATINA Y EL CARIBE (CMS AL&EC) Subcomité de Amenaza Sísmica, Clasificación de Sitios y Demanda Sísmica

CLASIFICACIÓN DE SITIOS

AMÉRICA LATINA Y EL CARIBE

2025

DOCUMENTO DE TRABAJO

8º Jornada de la Comisión Permanente del Código Modelo Sísmico para América Latina y El Caribe

América Latina y El Caribe - Clasificación de Sitios

LA·CLASIFICACIÓN·SÍSMICA·DE·SITIOS·DEPENDE·DE·LOS·ESTRATOS·DE·SUELOS·SUBYACENTES.¶

¶

TRADICIONALMENTE·SE·HAN·CLASIFICADO·LOS·SUELOS/SITIOS·USANDO·LA·RESISTENCIA·MEDIDA·ESTÁTICAMENTE.¶

¶

LAS·NORMAS·VIGENTES·REGIONALES·SIGUEN·O·ADAPTAN·LA·CLASIFICACIÓN·DEFINIDA·POR·<u>ASCE</u>·7-16 (con·algunas·excepciones).¶

4

SE·PROPONE·CLASIFICAR·LOS·SITIOS·USANDO·LAS·PROPIEDADES·DINÁMICAS·"PROMEDIO"·DE·LOS·SUELOS·SUBYACENTES:¶

¶

> VELOCIDAD-DE-PROPAGACIÓN-PROMEDIO-(PONDERADO-POR-EL-ESPESOR-DEL-ESTRATO)-DE-LAS-ONDAS-SÍSMICAS-DE-CORTE-EN-LOS-30-m-SUPERFICIALES-(INCLUIDO-EN-LA-MAYORÍA-DE-LAS-NORMAS-VIGENTES-DE-LOS-PAÍSES-DE-LA-REGIÓN):¶

¶

$$V_{S30} = \frac{\sum_{i=1}^{n} h_i}{\sum_{i=1}^{n} \frac{h_i}{V_{Si}}}$$
 $\sum_{i=1}^{n} h_i = 30 \text{ m}$

1

> PERIODO-PREDOMINANTE-MEDIDO-EN-EL-SITIO-(CHILE,-PERÚ,-CIUDAD-DE-MÉXICO): $T_s \P$

VI. Clasificación de Sitios en Normas Vigentes

América Latina y El Caribe - Clasificación de Sitios Vigente

CHILE Y PERÚ:

PAÍS	NORMA	AÑO		TIPO A	TIPO B	TIPO C	TIPO D	TIPO E	TIPO F
	NCh433 ²³	2026	V_{s30} , m/s	≥900	≥ 500	≥350	≥180	<180	Estudio
Chile	NCh2369 ²⁴	2025	$T_{\mathcal{S}}$, s	<0,15 o H/V plana	<0,30 o H/V plana	<0,40 o H/V plana	<1,00	_	especial.
				TIPO S0	TIPO S1	TIPO S2		TIPO S3	TIPO S4
Perú	E.030 ²⁵	2020	V_{s30} , m/s	>1.500	500-1.500	180-500		<180	Estudio
reiu	E.031 ²⁶	2019	T_{S} , s	<0,15	<0,30	<0,40		<0,60	geotécnico.

América Latina y El Caribe - Clasificación de Sitios Vigente

PAÍS	NORMA	AÑO.		${V_{s30}}$ (o ${ar V_s}$), m/s								
I Alo	HORMA	Aito	TIPO A	TIPO AB	TIPO B	TIPO BC	TIPO C	TIPO CD	TIPO D	TIPO DE	TIPO E	TIPO F
argentina ¹	INPRES- CIRSOC 103	2018	>1.500		760-1.500		360-760		180-360		<180	EE
elice ²	ASCE 7-16	2016	>1.524		762-1.524		366-762		183-366		<183	RS
olivia ³	NBDS2023	2023	>1.500		760-1.500		370-760		180-370		<180	EG
Irasil ⁴	ABNT NBR 15421	2006	>1.500		760-1.500		370-760		180-370		<180	ES
olombia⁵	NSR-10	2010	≥1.500		760≤V _{s30} <1.500		360≤V _{s30} <760		180≤V _{s30} <360		<180	EG
uba ⁶	NC 46: 2017	2017	>1.500		760 <v<sub>s30≤1.500</v<sub>		360 <v<sub>s30≤760</v<sub>		180 <v<sub>s30≤360</v<sub>		<180	EG
cuador ⁷	NEC-SE-DS	2014	≥1.500		760≤V _{s30} <1.500		360≤V _{s30} <760		180≤V _{s30} <360		<180	EG
l Salvador ⁸	_	2022	>1.500		760-1.500		360-760		180-360		180	<180, RS
uatemala ⁹	NSE 2.1	2024	>1.520		>910 a 1.520	>640 a 910	>440 a 640	>300 a 440	>210 a 300	>150 a 210	≤150	RS
laití ^{10,11}	IBC 2009	2012	>1.524		762 <v<sub>s30≤1.524</v<sub>		366 <v<sub>s30≤762</v<sub>		183 <v<sub>s30≤366</v<sub>		<183	EE
amaica ¹²	ASCE 7-16	2016	>1.524		762-1.524		366-762		183-366		<183	RS
anamá ^{13,14}	ASCE 7-05	2005	>1.524		762-1.524		366-762		183-366		<183	RS
uerto Rico ¹⁵	ASCE 7-16	2016	>1.524		762-1.524		366-762		183-366		<183	RS
lepública Iominicana ¹⁶	R001	2011	>1.500		760< <i>V_s</i> 30≤1.500		360< <i>V</i> _{s30} ≤760		180< <i>V_s</i> 30≤360		<180	AD
'enezuela ¹⁷	COVENIN 1756-1:2019	2019	>1.500	1.300-1.500	850-1.300	650-850	400-650	300-400	200-300	170-200	120-170	<120, EE
					TIPO S1 o A		TIPO S2 o B		TIPO S3 o C		TIPO S4 o D	
osta Rica ¹⁸	-	2010			≥760		350-760		180-350		≤180	_
Guadalupe, Guyana Francesa y Hartinica ^{19,20}	EUROCODE 8: EN 1998-1	2024			>800		360-800		180-360		≤180	Tipos S ₁ , S ₂ ES
londuras ²¹	CHOC-08	2007			>760		_		_		<150	_
licaragua ²²	RNC-07	2007			>750		360 <v<sub>s30≤750</v<sub>		180≤V _{s30} ≤360		<180	_

En general, de acuerdo a lo indicado en la columna correspondiente a los sitios Tipo F (o E, o S4), las normas requieren: análisis dinámico (AD), estudios especiales (EE), estudio geotécnico (EG), evaluación específica (ES), o respuesta de sitio (RS).

América Latina y El Caribe - Clasificación de Sitios Vigente

PAÍSES QUE NO INCLUYEN PRESCRIPCIONES PARA ACCIONES SÍSMICAS EN SUS NORMAS VIGENTES:

PAÍS	HABITANTES	COMENTARIO
Bahamas, Las	> 399.000	Las acciones de los eventos sísmicos no están incluidas en las normas para el diseño de estructuras.
Barbados	> 282.000	La Autoridad de Normas de Construcción (Building Standards Authority) está actualmente finalizando un Manual de detalles estandarizados para la construcción de casas y edificios pequeños.
Guyana	> 826.000	En dos normas de diseño (acero y edificaciones en altura), de tres disponibles (más albañilería), solo se mencionan los eventos sísmicos como una carga viva.
Paraguay	> 6.844.000	"Paraguay no tiene norma de diseño sísmico. Un comité formado por la Sociedad Paraguaya de Estructuras y el Instituto Nacional de Tecnología está elaborando una norma que incluirá un capítulo para el diseño sísmico."
Surinam	> 629.000	"Surinam utiliza la versión 1996 del código CUBiC."
Trinidad y Tobago	> 1.503.000	Hasta Junio 2018, Trinidad y Tobago no tenía norma de diseño estructural. La norma TTS 599:2006 indica que los efectos de los suelos no son significativos para pequeñas edificaciones sometidas a las acciones de eventos sísmicos, si no están construidas sobre arenas blandas licuables.
Uruguay	> 3.388.000	"Uruguay no cuenta con norma sísmica; no se han registrado sismos de importancia en los últimos 100 años."

VII. Clasificación Propuesta: Sitios A, B, C, D, E, F

Clasificación de Sitios Propuesta: Sitios A, B, C, D, E, F

SITIO TIPO	${\it V}_{s30}$, m/s	T_s , s
A	<i>V_s</i> 30 ≥ 1.500	< 0,10 o H/V plana
В	$1.500 > V_{s30} \ge 900$	< 0,15 o H/V plana
С	$900 > V_{s30} \ge 500$	< 0,30 o H/V plana
D	$500 > V_{s30} \ge 350$	< 0,40
E	$350 > V_{s30} \ge 180$	< 1,00
F	$180 > V_{s30}$	_

Esta clasificación es aplicable a terrenos de topografía y estratificación aproximadamente horizontal, y para casos que las estructuras no sean afectadas por singularidades geomorfológicas y/o topográficas cercanas. Si la estructura se apoya totalmente en roca o suelo duro ($V_s \ge 1.500 \, \text{m/s}$), independientemente de los materiales geotécnicos existentes sobre el sello de fundación, el sitio clasifica como Tipo A.

VIII. Clasificación Propuesta: Sitios (Especiales), G

SITIOS TIPO G:

- Aquellos que no se pueden clasificar como Tipos A, B,..., F.
 Sitios con subsuelos (o estratos de suelo):
- Potencialmente licuables.
- Susceptibles a densificarse bajo la acción de vibraciones.
- Susceptibles a colapsar.
- Orgánicos y turbas de espesor >3 m.
- Finos saturados de espesor >20 m con límite líquido >80.
- Finos saturados de sensibilidad >10.

SITIOS TIPO G:

• Estratigrafías de suelos contiguos de rigideces muy diferentes, caracterizados por velocidades de propagación de la onda de corte V_{sp} , que aumentan significativamente a V_{sn} , tal que:

$$V_{sn} \ge 650 \,\mathrm{m/s}$$

$$V_{sn}/V_{sp} \ge 3.6$$
 (2)

donde:

$$V_{sp} = \frac{\sum_{i=1}^{i=n-1} h_i}{\sum_{i=1}^{i=n-1} \frac{h_i}{V_{s_i}}}$$
 (3)

$$\sum_{i=1}^{i=n-1} h_i \le 20 \text{ m}$$
 (4)

y (n-1) es el número de estratos de suelos sobre el n-ésimo estrato cuya velocidad de propagación de la onda de corte es V_{sn} . O bien, en la vecindad de T_s , H/V>4,5 cuando se cumplen las Ecuaciones (1) y (4).

SITIOS TIPO G:

• Estratigrafías de suelos contiguos de rigideces muy diferentes (continúa)

Estas configuraciones estratigráficas generan reflexiones y refracciones de las ondas sísmicas que pueden resultar en desplazamientos y/o aceleraciones para los cuales este código no tiene (o no va a tener) prescripciones normativas. En estos casos se recomienda un estudio específico de respuesta de sitio que incluya la configuración estratigráfica y características dinámicas de los materiales.

SITIOS TIPO G:

- Localizados en terrenos con topografía irregular, donde pueden existir fenómenos de amplificación local, los cuales no están (o no estarán) cubiertos por este código. Por ejemplo, terrenos con pendiente ≥20°, sitios a distancias <300 m del borde superior de taludes con pendientes ≥25° y desniveles ≥30 m.
- Sitios cercanos a fallas geológicas corticales activas conocidas, con trazas cuyas dimensiones y cercanía pueden potencialmente afectar al sitio, en caso de ruptura.

